Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes

نویسنده

  • Sumit Ghosh
چکیده

Cytochrome P450 monooxygenases (P450s) represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.

منابع مشابه

Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato

Triterpenoids are a group of structurally diverse specialized metabolites that frequently show useful bioactivities. These chemicals are biosynthesized from the common precursor 2,3-oxidosqualene in plants. The carbon skeletons produced by oxidosqualene cyclase (OSC) are usually modified by cytochrome P450 monooxygenases (P450s) and UDP-dependent glycosyltransferases. These biosynthetic enzymes...

متن کامل

Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides.

Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed ...

متن کامل

Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants

Plant adaptation to external pressures depends on functional diversity in cytochrome P450 (CYP) enzymes. CYPs contain structural domains necessary for the characteristic P450 fold that allows monooxygenation, but they also have great variation in substrate binding affinity. Plant genomes typically contain hundreds of CYPs that contribute to essential functions and species-specific metabolism. T...

متن کامل

Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin.

Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton β-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and g...

متن کامل

The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis

Triterpenes constitute a large and important class of plant natural products with diverse structures and functions. Their biological roles range from membrane structural components over plant hormones to specialized plant defence compounds. Furthermore, triterpenes have great potential for a variety of commercial applications such as vaccine adjuvants, anti-cancer drugs, food supplements and ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017